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Illustrating a modeling approach to high school geometry: The pool

problem

by Patricio Herbst

This past March, I was invited to speak about high school geometry to a college geometry class, one that we might describe as a

Geometry for Teachers (GeT) class insofar as future teachers were an important, even if not the only, constituency. I was asked to talk

about why high school students need to study geometry—something that may be taken for granted in identifying geometry as a

mathematics class that future teachers need to take but may make sense to ask from the perspectives of both college mathematics

students and the mathematicians who teach them. In our proposal to NSF to fund the GeT Support project, we noted that

contemporary mathematical research has little to do with the geometry content students learn in high school, and the same might

be said about the mathematical experiences of undergraduates. Thus, if the geometry content does little to cement future learning

or research, it is worth asking what role high school geometry plays in high school students’ mathematical development. 

This question of the purpose of the study of geometry is not new. At the end of the 19th century, as the high school curriculum was

being formed in the United States, the idea that different scholarly disciplines were useful to train different mental faculties was in

vogue. Geometry was then justi�ed on account that it was expected to train logical reasoning. González and Herbst (2006) describe

this logical argument along with others which emerged later during the 20th century. An intuitive argument was offered that

described geometry as providing a language that students could use to relate to their everyday experiences in the material world. A

utilitarian argument was offered during the second world war period that described geometry as providing useful resources for the

world of work. And during the time of the New Math (in the 1950s and 1960s) a mathematical argument emerged that described

geometry as providing an opportunity for students to experience what mathematicians do: de�ne, conjecture, prove, and so on

(González & Herbst, 2006). To some extent those four arguments (logical, intuitive, utilitarian, and mathematical) are still being made

in different quarters; furthermore, we may come by a better answer to the question by integrating some of those arguments. While



the logical argument was questioned early in the 20th century, both the intuitive and the mathematical argument have always felt

complementarily compelling to me. 

A modeling approach 

In my talk to that class in March, I proposed that the geometry course provides students with opportunities to engage in the

mathematical modeling of their experiences with space and shape. Herbst, Fujita, Halverscheid, & Weiss (2017) used this idea as the

centerpiece of their graduate textbook on the teaching and learning of geometry. They offered Figure 1 below as a way to represent

what could happen in high school geometry. The box in the center represents an envisioned modeling approach to high school

geometry. The approach is informed by two sets of sources. On the one hand there is a source that we could associate with the

intuitive argument named above: Real world objects and activities are often represented (i.e., named, described, depicted) using

tokens that might be described as geometric. So, words—like line, square, and turn—and shapes are often used in describing how

people manage space and shape. This does not mean that by virtue of their use of those tokens those people are doing

mathematics in a way commensurate with that of mathematicians, but an argument that builds on embodiment and materiality

could be envisioned to suggest engagement in physical activities and their enactive representation has some mathematical

qualities. The diagram in Figure 1 suggests that high school geometry could build environments on top of those existing

relationships between the real world and our cultural representations of it. These environments are described as “geometric models

of representations of real world objects” which means at least two things. On the one hand, these models are particular

interpretations of the primitive objects, relationships, and postulates of formal geometries such as Euclidean geometry. On the other

hand, these models are environments for mathematical practice—environments in which the activities (e.g., calculation,

construction) and dispositions (e.g., pondering whether a solution is unique) of mathematical practice can be mobilized to produce

information that can be interpreted in terms of real world objects and activities. The arrow from Geometries to these models and the

adjective geometric attached to models point to the aspiration that work within those models be guided by the mathematical

sensibility that reigns in mathematical practice. Teachers and curriculum developers who are likely to know geometry as a

mathematical domain can organize these environments in which students’ experiences with real world objects and activities and

their representations are involved in the activities of mathematical practice and scrutinized with the sensibilities of mathematical

practice. A quick example of these relationships is the modeling role the use of a straightedge plays in helping think of a straight line

when confronted with concrete objects that might be described as forming a straight line—questions of incidence, betweenness,

separation, parallelism, and so forth can be brought from the geometric theory of lines and speci�c practices with the straightedge

may help interpret those questions in terms of concrete objects. The famous quote by Poincaré, “geometry is the art of reasoning

well from badly-drawn �gures” (cited in Bartocci, 2013), comes to mind along with the common practice of drawing in geometric

problem solving. A more detailed example may help make the point clearer.      

Figure 1. A modeling approach for secondary

geometry  

(adapted from Herbst et al., 2017)

The pool problem 

The pool problem serves as a more extended example of the modeling approach. This problem could be used relatively early in the

high school geometry course, after students have learned some basic constructions (e.g., how to construct a perpendicular bisector

to a segment) and how to prove triangles congruent. The problem can be used to develop students’ knowledge of a theorem about

right triangles: that, in any right triangle, the midpoint of the hypotenuse is equidistant from the vertices. More importantly, the

problem can be used to inscribe in high school geometry a simple example of the mathematical difference between sense and

reference (Frege, 1997/1892): The same mathematical object (the same point in this case) can be the referent of two different ways of

speaking (two different meanings or senses). This notion is pervasive in mathematics as two different procedures can construct the

same mathematical object. The pool problem can be used to instill the disposition to ask whether two different construction

procedures de�ne the same object. 



The pool problem says

Note here that some geometric concepts are being used to describe the concrete situation: the pool is rectangular; the word

adjacent is used to refer to the sides of the pool that make one of its right angles, etc. Finally, the notion that the race will be fair

alludes to equidistance. That reading of the problem using geometry along with existing habits to study the geometry of the

microspace (i.e., at a scale much smaller to that of the human body) might suggest an initial diagrammatic modeling to represent

the problem: Students could draw a rectangle and plot three points for the swimmers. This initial modeling decision can be quite

consequential in affording opportunities to project mathematical sensibilities onto the work; it can be advantageous, from a

mathematical point of view, to have rectangles of different sizes and aspect ratios, rectangles drawn free hand, and rectangles

constructed with straightedges. The expectation is that mathematical sensibilities and mathematical practice will help organize

super�cial variations among those representations. Poincaré’s proposition that “geometry is the art of reasoning well from badly-

drawn �gures” suggests that to reveal the geometry, it would be valuable if the diagram had some inaccuracies to begin with (such

as the strokes representing the sides of the pool not being exactly straight or the angle representing the corner of the pool not

being exactly 90 degrees; see �gure 2).

Figure 2. An initial

diagram of the pool

problem

The drawing in Figure 2 represents the pool situation using geometry. Can students use it and what they know in order to make

inferences about the situation? First of all, there are concrete answers that can be made available immediately: The distances

between any point picked at will inside the rectangle can be measured with rulers, and the point may be moved so as to make the

distances closer to each other. These answers can be revealed useless by virtue of the modeling choices: The distance that will be

equal for one set of swimmer positions will not necessarily work for a different set of swimmer positions, and even if those positions

were controlled, the particular measure of the distances among the points representing swimmer positions and prize location

would unclearly prescribe how to locate the prize position in the actual pool. Thus, early modeling choices, using the tokens of

intuitive geometry (vocabulary and imagery), might reveal the need for something else. In what follows I adopt the position of a

teacher anticipating how one could think of the problem with a class: I consider my audience in terms of what they are expected to

know (hence timing when and how I bring in what I know).

If we started from considering only two swimmers �rst, speci�cally the swimmer at the corner and a swimmer at one of the sides, it

would be easy to see that the midpoint of the segment determined by the two swimmers is equidistant from them (and the pool

context also suggests that would not be a reasonable place to locate the prize as such midpoint would not be in the pool!). But many

other points in the pool would be equidistant from those endpoints. As students have learned to construct the perpendicular

bisector of a segment, they might also know that this line is the locus of all points equidistant from the endpoints of the segment.

And if they didn’t yet know that, this might be a good time for them to come to know it. It might help to ask questions like: Since the

midpoint of the segment does not work, what would be a point inside the pool equidistant from the endpoints? Students might or

might not bring the perpendicular bisector as a resource to think about other points. If they didn’t, one could ask how they would

pick the point they are looking for, aiming to get explicit instructions. In our work with this problem in actual high school classrooms,

we have seen students gravitate to the perpendicular bisector directly or to ideas germane to its construction (e.g., using the

compass to make an arc from each of the endpoints and picking the point of intersection of the arcs). In case the students had

thought of the perpendicular bisectors, the question, “how could we prove that a point chosen on the perpendicular bisector is

equidistant from the endpoints?” might get to a partial conclusion of this simpler problem. In case the students had not thought of

the perpendicular bisectors and instead constructed a single point, the question, “is there any other point that would work?” might

move the discussion toward the end of characterizing all the points that would be reasonable locations for the prize.

Three swimmers are going to jump into a rectangular pool and race toward a buoy. One of them will do so from a corner of
the pool, a second from a side of the pool adjacent to that corner, and the third from the other adjacent side. Suppose the
swimmers are in position and you have to position the buoy. Where should you position the buoy to make the race fair?



Once that simpler problem has been solved, we can bring in the third swimmer. The ways of locating possible places for the prize in

the simpler problem could help �nd possible locations for a prize that would be equidistant from the second and third swimmer.

The question, “is there a spot that is equidistant from the �rst and the second swimmer and equidistant from the second and third

swimmer?” could get students to think of the intersection between the two perpendicular bisectors. The question, “[how] do we

know whether the �rst and the third swimmer are equidistant from the point of intersection of these two perpendicular bisectors?”

is also relevant here and could bring awareness of the transitivity of congruence. In that event, we have found a solution to the

problem, but we have not arrived yet at the statement of the theorem as no attention has been given to the midpoint of the

hypotenuse; not even a right triangle is visible. Indeed, the midpoint of the hypotenuse and the intersection of the perpendicular

bisectors of the legs of a right triangle are two different meanings (two different senses in Frege’s terminology) of the same referent.

A virtue of this problem, and of this way of approaching the problem, is that it delays attention to the referent, making room, as we

discuss below, for proof.  

While one solution to the original problem has been proposed, it is mathematically sensible to ask whether that is the only one.

Furthermore, the fact that we have found the one by doing some things with the diagram instead of others, it is also sensible from a

diagramming action perspective to ask whether we would get a different point had we made other choices. In some cases, the

question may yield simple, even trivial, answers, and in other cases, the question could lead to compelling stretches of mathematical

practice. For example, if instead of considering �rst the two points on one side and second the two points on the other side, we

altered that order, would the solution change? Students might be quick to note that the intersection of the same two perpendicular

bisectors is a single point, no matter which perpendicular bisector is drawn �rst. The other possible choice is, or can be made to be,

however, less immediate.

What if the �rst two points used for the simpler problem did not include a swimmer at the corner but were points on the sides of

the pool? Because the segment determined by those two points has not been drawn yet, thinking about their perpendicular

bisector might not be immediately obvious to students. The simpler problem warrants thinking about it, as the midpoint of that

segment would be one reasonable place to position the prize if the swimmers jumped into the pool from the sides. One solution

would be the midpoint of that segment. Yet, the real world situation also suggests some discomfort with it. In Figure 3, we can note

that diving toward the midpoint of the segment between them would require swimmers to form an acute angle with the side of the

pool and that it would feel more comfortable if that angle was larger. Thus, a practical reason might justify asking where, other than

at the midpoint of the segment between the swimmers, are all the points equidistant to them. Based on what was considered in the

�rst solution, students would likely gravitate toward thinking of the perpendicular bisector too, but this observation about the angle

might importantly seed a preference toward a solution farther from the midpoint of the segment. Because we are not merely

interested in solving the problem but in constructing the materials that matter in the theorem at stake (and more, as all of this

matters in understanding why the circumcenter is unique), that preference is desirable; it helps create the conditions for students to

understand that the referent of all these constructions is unique through rational means, by reasoning well about badly-drawn

diagrams.

Figure 3. Two

swimmers diving

from the sides

Now it would be reasonable to bring in the third swimmer, diving from the corner. Again, one could consider two different

perpendicular bisectors. Considering only one would provide a solution but leave open the question of whether choosing the other

perpendicular bisector would provide a different solution. Figure 4 shows what this could look like in a diagram deliberately chosen

to favor the posing of these questions. A deliberately chosen, badly drawn diagram would be one in which one could see the three

different meanings of the location of the prize (three different construction procedures) as if they pointed to three different

referents. 



Figure 4a. The different possible

solutions
Figure 4b. Shouldn’t X be on the

bisector of AC?

A super�cial appraisal of �gure 4a would avail the question, “are we saying that there are three different points equidistant from the

three swimmers?” As the last two solutions were found on the perpendicular bisector of AC, the �rst point found (X; see Figure 4a)

might appear as the odd one out and allow the questions: “Is X really equidistant from A and C? What would need to be true about

triangles AMX and CMX if AX was congruent to CX?” If available, the reciprocal property of the perpendicular bisector (if a point is

equidistant from two points, it is on the perpendicular bisector of the segment formed by the points) could come in handy to infer

that X should be on the perpendicular bisector of AC. If not, the conclusion could be reached by noting that triangles AMX and CMX

should be congruent by side-side-side (see �gure 4b). 

If not only Z and Y but also X are determined to be on the perpendicular bisector of AC, the students could be invited to draw the

�gure again, paying attention to locating X, Y, and Z. This is another case in which sense and reference are different; while one could

talk about those as potentially different points, there would be no way of drawing them as distinct points that lie on a single line,

even in a badly-drawn diagram!

Figure 5. M and X must be the same!

However, one could still ask, “What about M?” If one now considers triangles, say BMR and AMR, they would need to be congruent

by side-angle-side, making BM ≅ AM. Similarly, because BMS and CMS are congruent triangles, BM ≅ CM. This all would suggest M

would also be in the intersection of all three lines and the only point that can be used to place the prize. X, Y, Z, and M would be one

and the same point.

Back to the modeling approach

Badly drawn diagrams, such as those in Figures 4a, 4b, and 5, are doing things that formal, axiomatic geometry cannot do. By

offering a diagrammatic interpretation of geometric concepts and relationships, they activate a source of intuitive feedback to the

questions, assertions, and predictions that may come from the mathematical sensibility. This mathematical sensibility is one

capable of endowing a badly drawn diagram with some properties and looking for it to produce other possible properties. This

mathematical sensibility is one that will be ready to question the consistency of both classes of properties; and it is essential in order

for reasoning with diagrams to model mathematically the relationships between real world objects and activities (including the

activities of drawing, folding, and moving about in space) and the geometric representations of those objects and activities. As the

narration above suggests, for the high school geometry class to have access to that mathematical sensibility not only well-chosen

tasks are needed but also a teacher who is disposed to both ignore publicly what they know about geometry while embodying the

dispositions to know that are part of the mathematical sensibility. In such a context, one could see the high school geometry class as

a place where students are apprenticed into the practice of mathematicians by working with the intuitive ideas of geometry. High

school geometry could be the place in which one learns to resolve the logical contradictions that arise from drawing bad diagrams

and thinking with badly drawn diagrams. This modeling approach builds on earlier arguments for why students should study

geometry. The importance of engaging in the practices of mathematicians is af�rmed as a way to solve problems by making

representations whose attributes are ascribed and veri�ed rationally as opposed to empirically. Geometric content is valuable not

because geometry is a preferred example of a mathematical system of postulates, theorems, and proofs, but because experiences



managing space at different scales provide sources for representations (embodied, iconic, symbolic) that can help pose problems

and provide feedback on thinking. Logical reasoning is called upon to support mathematical practice, as well as to confront the

feedback from various representations. And the capacity to mathematically model experiences with shape and space, while

contextualized in geometry, might support modeling in work contexts, where it can be useful to anticipate rationally the solutions to

problems of managing space and shape.
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Re�ecting on the SunRule as a Multiplication Model

by Claudine Margolis

At the February GeT Seminar, Justin Dimmel made a compelling case for the use of light from the sun and stars as a naturally

occurring context to study the geometry of parallel lines. One outcome of his work has been the ongoing development of a

mathematical tool called the SunRule. By combining the geometry of parallel lines which model the sun’s light, the mathematics of

proportionality in similar �gures, and the functionality of a slide rule, the SunRule allows the user to calculate the product of two

quantities. Justin prompted us to consider the way this new tool could be used for mathematics teaching and learning, including

teaching and learning for preservice mathematics teachers. I was interested in exploring the potential conceptions of multiplication

that might arise from using the SunRule for computing products and making sense of multiplication, so I created a virtual version

on Desmos for experimentation.

The SunRule leverages parallel light rays from the sun to create shadows along a ruled board. The shadows are cast by two

gnomons, one (U) which is a single unit tall and the other (V) which can be set to any length (within the physical constraints of a

physically instantiated SunRule). By tilting the board with gnomons attached, the angle (θ) at which the shadow “intersects” the

board can be adjusted. The length of the shadow that the unit gnomon projects (U’) onto the board can be adjusted in this way,

resulting in a proportional adjustment of the length of the shadow projected by the gnomon of variable height (V’).

The SunRule can be used to calculate the product of a • b by setting the height of V to a length of a and adjusting the angle of the

board so that the length of U’ is b. The value of the product can be read as the length of V’, or the distance that the shadow of the

variable length gnomon reaches along the ruled board. A series of products are illustrated in Figure 1.

0.5 • 1 = 0.53 • 2 = 6 3 • 3.33 = 9.99

Figure 1. Three SunRule states that illustrate the product of two values.



Once I understood how the SunRule could be used to compute products, I started to wonder what we can learn about multiplication 

with this model. My interpretation of the SunRule is that it scales the quantity U’ by a factor of V (as shown in Figure 2), although 

others might interpret it as the quantity V being scaled by a factor of U’. If both factors are integers, the product can be interpreted 

as V groups of the length U’ (as illustrated by the purple bars at the bottom of Figure 2), but the variable length gnomon can be set 

to any value between 0 and some maximum determined by the length of the rod being used. There is no reason for it to be set to an 

integer value. What happens if we set it to a non-integer value? What happens if we set V<1? What if we set U’<1? What if either 

factor is 0? What if either factor is negative? What if both factors are negative? What happens to the product as one factor slides 

continuously? What if both factors slide? If one factor is increasing at the same rate the other factor is decreasing, what happens to 

the product? What does the area of each triangle represent?! I would argue that many of these questions are best answered by 

playing with the SunRule eTool rather than considering static examples, though Justin might argue that playing with a real SunRule 

is even better than playing with an eTool. For now, sharing the eTool is easier than sharing the real thing, so try it for yourself: https://

www.desmos.com/calculator/fj7zbbrkrd

Figure 2. A static attempt at representing the process of

multiplying positive factors with the SunRule.

What I have found most interesting is the relationship between the purple bar at the bottom of the diagram (let’s call that a U’

Number Line) and the horizontal axis which measures lengths of U. As we let U’ slide, the U’ Number Line is stretched or

compressed, but the number of units displayed remains constant. As we let V slide, the length of a unit remains constant, but the

number of units displayed changes. If we focus on the relationship between the U’ Number Line and the horizontal axis, we have a

new (to me) representation of a double number line that can model multiplication of two continuous variables. It feels very similar to

the classic number line representation of multiplication, which models a • b as a “jumps” of b length along a number line, but we no

longer need to limit a to being an integer.

https://www.desmos.com/calculator/fj7zbbrkrd


Figure 3. As U’ and V change, the double number line (U’ Number Line and

the horizontal axis) model multiplication of two continuous variables.

I invite you to play with and think about what the SunRule makes available for students to learn about multiplication. What does it

obscure? What does this virtual approximation of the SunRule make available that the real SunRule does not? What does it

obscure?
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The Geometry of Sunlight

by Justin Dimmel

Sunlight provides an abundant, renewable, accessible source of naturally occurring rays that, for all intents and purposes, are

parallel. It is the rare example of a real-world context with which nearly all children are familiar. Despite its familiarity and near

universality, sunlight plays almost no part in K-12 mathematics classrooms. This is a missed opportunity in geometry classrooms in

particular, where sunlight could provide not only an exempli�cation of the Euclidean notion of parallel lines but also raw material for

doing mathematical work. This note explores the parallelism of sunlight and proposes a collaborative activity that would recreate an

ancient geometric triumph: Eratosthenes’ measurement of the circumference of the Earth. 

On the parallelism of sunlight

Eratosthenes of Cyrene was the chief librarian at the library of Alexandria during the 3  century BC. Popular retellings of

Eratosthenes’ method for measuring the circumference of the earth tend to dwell on the assumption that sun rays are parallel. For

example, a recent (2019) article in Medium describes this assumption as, “incorrect, but acceptable for the equipment available at

the time.” It is true that Eratosthenes made an assumption about sunlight, but to dismiss this as something that was harmless but

ultimately incorrect elides an opportunity for mathematical investigation. 

The parallelism of sunlight can be understood in comparison to a more familiar real world example of parallel lines: railroad tracks.

For high-speed rail, the gauge variation, or the allowable variation in the distance between tracks, as measured along any 3m length

of railway, must not exceed 6mm. Thus, railroad tracks are permitted to deviate from parallel by nearly 7’ of arc (where 1’ of arc is 1/60

of a degree): 

tan  (6/3000) = .1145 degrees = 6.87’ of arc

rd

-1



This is the angle that is subtended by one 3m (3000mm) length of track and the 6mm tolerance. By contrast, the deviation from

parallel of sunlight over a distance of 3m is effectively zero, because Earth is nearly 150 billion meters from the sun: 

tan  (3/150,000,000,000) = .000000001 degrees = .00000006’ of arc

Thus, locally, sun rays are not only more parallel than railroad tracks, their deviation from parallel is well below the threshold of what

can be measured with a theodolite. Even globally, sunlight’s deviation from parallel is all but negligible: 

tan  (6,500,000/150,000,000,000) = .0025 degrees = .15’ of arc

So, it is technically true, in a narrow sense, that sun rays striking the Earth are not parallel. But practically, effectively, sun rays are

parallel, and this parallelism is a resource that can be harnessed for doing mathematical work. 

The solstice, the cities, and the well

Apart from a concern about the parallelism of sun rays, other legacies of the legend of Eratosthenes are the signi�cance of the date

—the measurements are said to have occurred on the summer solstice, the locations of the cities in which the measurements were

taken—Syene and Alexandria, and the well that was said to perfectly re�ect the noon sun. Narratively, these details add richness to

the story that help to situate the measurement as a historically signi�cant achievement that was a product of the ancient world. And

it was all those things. However, mathematically, these details bury the lede, which is that the parallel rays of the sun allowed a

surface dweller to measure the size of the very earth under his feet; because the sun’s rays are parallel, any observed differences in

the altitude of the sun must be a result of the curvature of the earth. Thus, by comparing the altitude of the sun at different

locations, it is possible to deduce the size of the earth. The date, the locations, and the well are immaterial. The measurements could

take place on any day, anywhere, provided the different places where the measurements take place are not too close together. To

recreate the feat, all that is needed is coordination—of the date on which to make the measurements—and improvisation—of a

device for measuring the altitude of the sun. 

Here is how it would work: 

1. We choose a date to take the measurements. This could be before the end of the academic year or else in the late summer or

early fall, as an activity that could kick off the next academic year.

2. We engineer devices that can measure the maximum altitude of the sun. The image below (Figure 1) shows an example of one

such device, improvised from a phone, a shoe, a pencil, a rubber band, and graph paper.

3. We compare our measurements against the north/south displacement of where the measurements were taken. For example, if

measurement locations are near odd-numbered interstate highways, it may be possible to approximate the north/south

displacement from mile markers.

Figure 1. An improvised device for measuring the maximum altitude of the sun. 

-1

-1



The device shown in Figure 1 is designed to record the shadows cast by a gnomon as the sun moves across the sky near local 

apparent noon. The pencil acts as a gnomon, which is the technical name for the part of a sundial that casts a shadow. The shadow 

of the gnomon is projected onto graph paper, which allows for the calculation of the apparent altitude of the sun (using the height 

of the gnomon off the ground, the length of its shadow, and the arctangent relationship). Finally, the apparatus is mounted to a 

phone, so that the movement of the shadow around solar noon could be recorded. When the shadow reaches its shortest length, 

the sun attains its highest altitude, and that is the measurement that would be used for the activity. This is intended only as an 

example of a device that could be improvised; readers are encouraged to use their own design and engineering skills to create 

something better.

This is a sketch of a plan that will be hashed out in more detail among the group of readers (and their students!) that want to 

participate in this collaborative recreation of Eratosthenes’s feat. If you would like to participate, please email me (on or before 

Monday, June 7) at justin.dimmel@maine.edu. I will email those who express interest, and we will come up with a plan that works for 

everyone who wants to be involved.
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GeT Course Student Learning Outcome #3

by Teaching GeT Working Group Members

SLO 3: Secondary Geometry Understanding. Understand the ideas underlying the typical secondary

geometry curriculum well enough to explain them to their own students and use them to inform

their own teaching.

While there are students who do not plan to teach geometry in Geometry for Teachers (GeT) courses at most institutions, it is

required for those who will become secondary math teachers. To be a good secondary geometry teacher, one must understand the

content, know the best practices for teaching the content, and be able to re�ect on one’s teaching. 

Although high school geometry is described as “devoted primarily to plane Euclidean geometry, studied both synthetically (without

coordinates) and analytically (with coordinates)” (NGA & CCSSO, 2010, para. 2), for many reasons, students in the U.S. often enter a

GeT course with varying levels of knowledge of Euclidean geometry. As GeT instructors, it is our job to �ll in the students’ knowledge

gaps so they are prepared to teach secondary geometry. However, due to limited time in a GeT course (usually one semester) and

GeT instructors’ varied preferences in content selection, it is not practical to suggest a list of geometry topics to be covered in a GeT

course. Thus, the GeT course should focus on helping students understand essential mathematical practices and develop problem-

solving skills that can be translated to any geometry topic. 

The Standards for Mathematical Practices are the most important piece of the Common Core State Standards for Mathematics

(CCSSM), which “describe varieties of expertise that mathematics educators at all levels should seek to develop in their students”

(NGA & CCSSO, 2010, para. 1). Even though some states have moved away from using CCSSM and have developed their own state

standards, their new state standards typically include these eight practices or something similar to them. These practices form the

foundation for good mathematics teaching. They are:
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2. Reason abstractly and quantitatively. 

3. Construct viable arguments and critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precision. 

7. Look for and make use of structure. 

8. Look for and express regularity in repeated reasoning. (NGA & CCSSO, 2010)

Furthermore, these practices provide the structure for mathematical problem solving, and any GeT student can bene�t from

becoming a better problem solver. We also want pre-service secondary geometry teachers to be able to model these practices in

their future classrooms so GeT instructors should model these in our own classrooms.

All GeT instructors need to be aware of teacher preparation standards that have been created to help prepare secondary geometry

teachers (Table 1) and to incorporate them in their GeT course designs in a way that �ts their teaching agenda. Many different

professional organizations (e.g., AMTE and NCTM) contributed to these standards and suggested what faculty should be doing to

prepare better secondary mathematics teachers. GeT instructors should also be aware of the national and state curriculum

standards (Table 1) and introduce them to GeT students so that they can start to become familiar with the standards that they will

teach. The majority of states in the U.S. have adopted the CCSSM for their K-12 schools (see this map), and if your state does not use

CCSSM, it is best to Google “State K-12 Mathematics Standards.” 

Table 1

Resources for Standards

Standards Issuing Organizations

Teacher Preparation

Standards

The Mathematical Education of Teachers II

(2012)

Conference Board of the Mathematical Sciences

Standards for Preparing Teachers of

Mathematics (2017)

Association of Mathematics Teacher Educators

Standards for the Preparation of Secondary

Mathematics Teachers (2020) 

Standards for the Preparation 

of Middle-Level Mathematics Teachers

(2020)

National Council of Teachers of Mathematics

Curriculum Standards

for K-12 Schools

Principles and Standards for School

Mathematics (2000)

National Council of Teachers of Mathematics

Common Core State Standards for

Mathematics (CCSSM) (2010)

National Governors Association Center for Best Practices,

Council of Chief State School Of�cers

Technology

Integration

Framework

Technological Pedagogical Content

Knowledge (TPACK) (2012)

tpack.org

Because GeT courses are required for students who will become secondary mathematics teachers, GeT instructors must understand 

the needs of this group of students when in their course. It is not enough for these students to know the content, these students 

must gain specialized knowledge to teach effectively. Shulman (1986) describes this as pedagogical content knowledge; it includes, 

in part, an understanding of what makes learning some topics easy or dif�cult. To have this type of understanding, students must 

have opportunities to re�ect upon and compare/contrast analogies, illustrations, and examples. Ball, Thames, and Phelps (2008) 

describe pedagogical content knowledge as a bridge between content knowledge and the practice of teaching. GeT instructors 

should foster the construction of this knowledge by sharing teaching techniques and through conversations about teaching

geometry content. For example, by taking the time to discuss multiple approaches to solving problems or by examining different 

frameworks for writing proofs, the GeT instructor is providing students the opportunity to re�ect on misconceptions and ways that 

make the content more understandable by others. This type of knowledge is necessary for future teachers.

1. Make sense of problems and persevere in solving them. 

https://worldpopulationreview.com/state-rankings/common-core-states
https://www.cbmsweb.org/the-mathematical-education-of-teachers/
https://amte.net/standards
https://www.nctm.org/uploadedFiles/Standards_and_Positions/NCTM_Secondary_2020_Final.pdf
https://www.nctm.org/uploadedFiles/Standards_and_Positions/NCTM_Middle_School_2020_Final.pdf
https://www.nctm.org/Standards-and-Positions/Principles-and-Standards/
http://www.corestandards.org/Math/
http://tpack.org/


Another aspect that helps with secondary geometry understanding is technology. Many teacher education standards and

curriculum standards have addressed the use of technology in some way. For example, one of the grade 8 CCSSM geometry

standards speci�cally mentions geometry software. Therefore, the GeT course needs to utilize technology to help understand and

explore concepts in geometry. More information about the use of technology will be addressed in the Technology SLO.
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GeT Course Student Learning Outcomes #5

by Teaching GeT Working Group Members

SLO #5  [De�nitions] Understand the role of de�nitions in mathematical discourse:

1. Understand the importance of precise de�nitions for geometric objects andthat necessarily some geometric terms and

relationships must remain unde�ned.

2. Recognize that there are a variety of acceptable de�nitions for some geometric objects.

The role of de�nitions in mathematics is a rich area for students’ exploration that is often overlooked. In many math classes,

de�nitions are given by the textbook or teacher. However, in a geometry class, de�nitions can be a fruitful area for students to

explore. Students can propose their own de�nitions for elementary concepts, such as a square, a triangle, circle, or even a straight

line. They can engage in class discussions about veri�able mathematical de�nitions versus vague descriptive de�nitions, and they

can compare and contrast de�nitions with different properties included.  For example, when asked to de�ne what a rectangle is,

one student might say it is a quadrilateral with four equal angles; another might say it is a quadrilateral that has at least three right

angles and doesn’t have four equal sides; another might say it is a quadrilateral with re�ection symmetry across the perpendicular

bisectors of its sides; yet another might say it is a quadrilateral with four congruent angles and two pairs of congruent parallel sides. 

Classes can have rich discussions regarding both the equivalence and the quality of proposed de�nitions. Criteria for the quality of

de�nitions could include: (1) use of commonly understood words or previously de�ned terms, (2) accurately describing what is being

de�ned, and (3) including no super�uous information. One strategy to convey the need for (1) is to “de�ne” two “nonsense” words

with de�nitions that refer to one another and hence have no meaning. Some de�nitions must involve unde�ned terms, to avoid

in�nite regress. A strategy to convey this is to ask students to come up with a de�nition of a familiar object and prompt them to

de�ne the terms they use in their de�nition.

Choices for de�nitions necessarily set the context for proving activity. For example, proving that two lines are parallel because they

do not intersect can be very different from proving that they are parallel because they are everywhere equidistant. GeT students can

also consider how changes in the assumptions within a geometric de�nition can lead to changes in the interpretations of other

terms involving that de�nition. For example, a circle is often de�ned as the set of all points in a plane that are equidistant to a given

point. If a geometry adopted the Euclidean metric for distance, then the property that distinct circles have a �nite number of

intersections holds; however, this property is not maintained with the Taxicab metric (Krause, 1975). 

The logical consequences of statements involving a de�nition include the assumed meanings for terms within a de�nition as well as 

the axioms of the system . For those who include signi�cant non-Euclidean topics  there is opportunity to investigate the same



de�nitions using different models. For example, there are no quadrilaterals with four right angles on the surface of the sphere or on

the hyperbolic plane, but there are still quadrilaterals with re�ective symmetry over the perpendicular bisectors of their sides. On the

hyperbolic plane, there are lines that do not intersect but are not everywhere equidistant. On the sphere, there are not any lines that

do not intersect, but there are still lines that make equal corresponding angles with a transversal. Some instructors have been

surprised to discover that when students spend time in class exploring de�nitions and then are given a new space to explore on

their own, they can productively spend weeks exploring the implications of potential de�nitions. For instance, what is a circle on the

surface of a cone? If a circle is de�ned as the set of all points obtained by going a �xed distance from a given center in all directions,

we get different circles than if a circle is de�ned as a �gure with constant curvature, which is in turn different than if a circle is

de�ned as a closed �gure such that every straight line segment from the center to the boundary is the same length. Each of these

types of circles have different properties that students can explore.

The taxonomy of geometric objects is closely tied to de�nitions, and the exercise of classifying objects helps GeT students attend to

the rami�cations of adopting different de�nitions and become prepared to support prospective students’ reasoning at different Van

Hiele levels (see, e.g., Burger & Shaughnessy, 1986). In elementary school, students are taught how to identify and classify different

quadrilaterals as rectangles, rhombi, squares, or none of the above. As de�nitions become formalized in middle and high school

geometry, they become associated with increasingly generic representations. It is in the GeT course that students consider the

results of adopting alternative de�nitions for geometric terms. For example, trapezoid is typically de�ned inclusively in college

geometry courses (a trapezoid is a quadrilateral with at least one pair of parallel sides) but it is sometimes de�ned exclusively in

elementary and secondary courses (a quadrilateral with exactly one pair of parallel sides). Other terms commonly encountered in

secondary geometry for which GeT students could discuss the consequences of adopting de�nitions supporting exclusive or

inclusive meanings include: whether coincident lines are types of parallel lines, whether kites are types of rhombi, and whether the

identity transformation is considered to be a type of rotation or a type of translation. Determining whether and when de�nitions

have equivalent meanings and the consequences of adopting exclusive or inclusive de�nitions prepares GeT students for the

varieties of geometric de�nitions they may encounter in teaching secondary geometry. 
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GeT Course Student Learning Outcome #9

by Teaching GeT Working Group Members

SLO 9: Non-Euclidean Geometries.  Compare Euclidean geometry to other geometries such as

hyperbolic or spherical geometry.

Just as visiting another country can offer us a richer perspective on our own culture, so too can the study of non-Euclidean

geometries help students to develop a deeper understanding of Euclidean geometry. While it is natural for students to be

uncomfortable working in a geometry that varies from their intuition, non-Euclidean geometries afford an opportunity to explore

and visualize novel worlds that can engage their imagination. In addition, learning the rules of these geometries puts students that

plan to teach in the position of their students who may be learning Euclidean geometry for the �rst time. The choice of which

different non-Euclidean geometries to consider might depend on the demands of the GeT course, but all offer new perspectives on

familiar geometric objects and relationships.

In our everyday experience we regularly encounter multiple geometries. Buildings tend to be Euclidean. We expect �oors and

ceilings to be planar. Outside, the horizon reminds us that we live on a sphere. Our visual �eld routinely processes distant objects as



smaller than comparably sized things that are nearby, just as they could be represented in projective geometry. In the car, we

measure distance with a taxicab metric. Fans of science �ction may even encounter images and ideas of hyperbolic geometry.

Notably, non-Euclidean geometries can be viewed through two different lenses: geometrically, as spaces that are physically different

from Euclidean space, or axiomatically, as spaces in which different axioms are true. 

The amount of time devoted to non-Euclidean geometries can vary widely depending on factors including audience, instructor

preference, and institutional expectations. For a class consisting primarily of pre-service teachers, a substantial amount of Euclidean

content is necessary, though at least some non-Euclidean geometry is recommended. In a comparative geometries course it would

be natural to consider several different non-Euclidean geometries, while a class that focuses primarily on Euclidean geometry might

include a brief survey of some non-Euclidean examples or focus on one �avor for a longer period of time.  In any case, what follows

are some of the learning opportunities offered by each.

Incidence Geometries are useful for getting a sense of how theorems follow from a set of axioms. These involve a reduced set of

axioms and perhaps make it easier to introduce some principles of proof writing in that context. Taxicab geometry is an easily

described alternate geometry that can lead to rich mathematical exploration. Here we note that when we speak of “non-Euclidean

geometry,” we mean this broadly, referring to geometries that are different from our usual notion of Euclidean two-or three

dimensional space. In taxicab geometry, we change our usual de�nition of distance in the plane. Rather than using a Pythagorean

measurement, we measure the distance between two points as the sum of the absolute differences of their Cartesian

coordinates. This radically changes the form of objects that are de�ned in terms of distance. For example, a circle (the set of points at

a given distance from a given point) no longer appears round. Ellipses, hyperbolas, and parabolas provide an even greater challenge!

Spherical geometry offers the advantage of being (fairly) easy to visualize (or hold in your hand).  As a more accurate representation

of the surface of the planet than a �at Euclidean world, it has relevance.  An introduction to spherical geometry immediately

challenges our understanding of the unde�ned term “line” and our belief that between any two points there can be drawn a unique

line. Other explorations might have students consider parallel lines on the sphere or the angle sum of a triangle.

Taxicab and spherical geometry serve well as examples of non-Euclidean geometries that can be explored at any point in a GeT

course.  Hyperbolic geometry can be as well, though its close relationship to Euclidean geometry is perhaps best appreciated when

students are more experienced with axioms and axiomatic systems. Hyperbolic geometry differs from Euclidean geometry only in a

parallel postulate.  In Euclidean geometry, we assume there is exactly one parallel through a given point not on a given line. In

hyperbolic geometry, we adopt a different parallel postulate, so that there are multiple lines through a given point parallel to a given

line.  Changing this axiom is, in fact, how hyperbolic geometry was �rst developed historically.  Moreover, we can simply remove that

axiom altogether to end up with a third geometry, Neutral geometry.  Comparing the mathematical properties of these three

geometries and their interplay leads to rich discourse. It is also worth noting that although hyperbolic geometry perhaps arises most

naturally from this axiomatic change, it can also be viewed geometrically as a space of constant negative curvature. In this sense, it

provides an instructive example of a non-Euclidean geometry having properties different from Euclidean geometry.

The relationship between Euclidean, hyperbolic, and Neutral geometry can be made explicit by proving the equivalence of parallel

postulates in Neutral geometry.  For example, transitivity of parallelism (“Two distinct lines each parallel to a third line are parallel to

each other.”) is logically equivalent to Euclid’s �fth postulate in Neutral geometry.  Proving that equivalence, or one similar, can be a

valuable experience by strengthening student understanding of proof.  These proofs are demanding but are generally relatively

brief.

Rectangles (quadrilaterals with four right angles), for example, are among our most familiar geometric objects.  However, while the

existence of rectangles can be easily established in Euclidean geometry, it can be proven that they exist neither in hyperbolic

geometry or in spherical geometry. In both of those cases, a pair of lines can share at most one common perpendicular line making

a rectangle impossible.  In Neutral geometry, we can neither prove nor disprove their existence.  Likewise, we can show that similar,

non-congruent triangles do not exist in hyperbolic geometry.  Examples such as these differentiate between the geometries and

demonstrate the necessity of Euclid’s �fth postulate. In this way, they can help strengthen student understanding of axiom systems. 

Hyperbolic geometry offers opportunities for students to strengthen their facility with geometric straightedge and compass

constructions through an exploration of hyperbolic geometry models.  Since both the Poincaré and Klein models of hyperbolic

geometry are situated within Euclidean geometry, constructions of “lines” and “perpendiculars” in these models translate to

Euclidean constructions. These constructions can cover a range of complexity, from the trivial (e.g., constructing a “line” in the Klein

disk) to the highly involved (“Dropping a perpendicular” in the Poincaré disk).  Dynamic geometry software is an excellent resource

here, as there are a wealth of online tools available that automate some of the most dif�cult constructions.  This has the added



bene�t of encouraging students to engage in higher order thinking on constructions in ways that were not possible only a few years

ago.
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Social Networks within GeT: A Pencil

by Kolby Gadd

We all know the past many months have presented challenging circumstances to do our work. Facing these challenges underscores

the importance of personal and professional social networks to maintain one’s connection, productivity, and wellbeing. During the

COVID-19 pandemic, CEDER, the organization contracted to do evaluation work on behalf of GeT Support, has used social network

theory (see, e.g., Borgatti & Ofem (2010) and Portes (1998)) to learn about the experiences members of GeT: A Pencil have had in the

group. My purpose here is to share some of the �ndings from our analysis.

Our analysis relied on data collected from a survey and interviews with members of GeT: A Pencil. Our survey included questions

about group interaction and the activities they did together. In total, 18 of 29 members of GeT: A Pencil responded to our survey.

These members generally had high levels of experience both as teachers of GeT courses and as members of GeT: A Pencil. Half of all

respondents reported having taught a GeT course more than �ve times in their career. Also, more than half joined GeT: A Pencil at

least two years ago. 

To complement the survey data, we also interviewed  members of GeT: A Pencil to learn more about their thoughts and experiences

regarding activities and relationships within the network. We asked participants, for example, about ways their thinking about

teaching has evolved as a result of participating in the network and how the network could be more supportive of their work as GeT

instructors. We invited people for interviews who would help us understand the range of experiences within GeT: A Pencil, and

CEDER staff interviewed 16 of 29 GeT: A Pencil members. 

When asked about bene�ts of being a member of GeT: A Pencil, most respondents discussed the interactions they have had with

other community members. One member shared about opportunities to interact with others who have a wide range of expertise

saying: 

This quote illustrates the quality of connections available to members of GeT: A Pencil. Survey responses also provided evidence of

the breadth of activities that promoted connection among members. Analysis showed, for example, that members who reported

reading the newsletter, using instructional resources shared within the network, and attending working group meetings formed

connections with others that helped them re�ect on their work as instructors in GeT courses.

Interviews provided further evidence that many relationships among members of GeT: A Pencil are supportive of members’ work as

instructors. In interviews, respondents described changes to their teaching that they attributed to their participation in GeT: A Pencil.

Eleven of the fourteen people who responded to this question reported they have changed or plan to change their teaching

practices as a result of engagement with the community. Members reported they have changed their pedagogy to better facilitate

conversations with students, make the course more interactive, or engage students in more problem-based learning. One member

changed how they taught proof based on ideas they got from the community:

“I feel like there’s lots of things happening all the time with [the community]. There’s a seminar I could sit in on, a group of
people that are working on different issues that are national issues…I think one of the big strengths of the community that
they’ve developed is the breadth. There are lots of different things that people are working on. Lots of different people that
I could talk to if I have a particular question about a topic that I want to maybe change a little bit in my class, or maybe do
something a little different next time. I have people that I could reach out to that I wouldn’t know about otherwise. There
was not another place that I would be able to �nd out who’s doing something interesting or cool or intriguing in college
geometry classes.”

https://docs.google.com/document/d/1gwCV8YeyXgmbGDIZTcNFH0WaB4IVJqOf/edit#heading=h.tyjcwt


Some members described changes in their practice due to their increased awareness of how to teach the course for future

educators. These members said that participating in the community helped them to develop a broader perspective on GeT courses,

especially in terms of prioritizing the learning needs of pre-service teachers. One commented:

In summary, GeT: A Pencil is a community with a goal of supporting members in their efforts to teach GeT courses. Evidence from

the evaluation showed numerous examples of how members have connected amidst an ongoing pandemic. Speci�cally, the

evaluation found evidence of members’ willingness to engage with each other in meaningful discussions about teaching GeT. This

evidence shows ways in which GeT: A Pencil is accomplishing its goal of supporting members.
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Get to know the community

Four questions with Laura Pyzdrowski, Professor of Mathematics, West Virginia University.

Q1? What is special about your GeT course? In 2-3 sentences, describe your GeT

course.

The GeT course that I instruct only has students enrolled who are interested in teaching

mathematics. That provides the opportunity to customize the course and focus the

curriculum and instruction with that in mind.

Q2? Who are your students?

My students are primarily undergraduate mathematics majors who have an Area of

Emphasis in Mathematics Education (pre-service teachers seeking grades 5 – 12

certi�cation in mathematics).  In the future, some students could also be from other

majors earning a minor in Mathematics Education via the Mathematics Department.

Q3? What are you most interested in learning/achieving through participating with the GeT: A Pencil community?

“We were doing proofs by transformation versus just proof by axioms, by axiomatic method. And I got some helpful ideas
[from the community] about, in the classroom, having my students look at some proofs and approaching them through
proof by trans- formation, when we had done it in another way previously.”

“I would say broadly, the thing that I’ve thought more deeply about is thinking about the teacher side of things as opposed
to the math side of things. I’m trained as a mathematician, not a math educator, and so when I’m teaching that course or
any of my math courses, I’m thinking to myself as a mathematician. Being in the GeT community, especially where I
encounter more math educators, it’s made me more aware that I’m training future teachers when I’m teaching my math
courses, and paying attention to those issues.”

mailto:%20lpyzdrow@math.wvu.edu


I am engaged in this community so that I can grow professionally and possibly help others who are engaged in that same process. 

My primary goal is to provide an up-to-date and current GeT course at WVU for pre-service teachers.

Q4? What is your favorite book you have read in the last few years?

It is dif�cult to �nd time to read for pleasure.  My husband and I listen to audiobooks when we travel to visit relatives.  We are

listening to books from the Oregon Trail series by Clive Cussler.

Did you get promoted? Win a grant? Have a baby? Buy a house? We would love to feature your news, whether professional or

personal! Email us at GRIP@umich.edu.

Transformation Working Group Update

by Julia St. Goar

In the spring of 2021, the transformation working group created a lesson in the context of transformation geometry, taught and

observed the lesson in a group members’ online course, and re�ected on the implementation of the lesson. This effort resulted in a

publication in the AMS Blogs (Boyce et. al., 2021). The lesson created by the group re�ected a variety of content goals including that it

should contribute to student understanding of mathematical de�nition, emphasize mathematical precision, and help develop a

culture of sense-making, exploration, and justi�cation.. A further goal was to create an introductory-level, inquiry-based learning

lesson that could be easily adapted to be placed into a variety of different types of GeT courses and contribute to student

understanding of transformation geometry. The lesson used Adinkra, which are symbols created in Ghana, from the resource

created by Eglash et. al. (n.d.). 

Moving forward, the group will likely teach different versions of the above lesson in the GeT courses taught by transformation group

members, re�ect on how it went as a group, and modify the lesson accordingly. More broadly, the group will continue focusing on

collecting and creating activities that support student understanding of foundational topics in transformation geometry. 

Parallel to the above goals the group has an ongoing goal of formulating an axiomatic system such that (a) its statements are

accessible to both college geometry students and high school students and (b) the axioms lead to an ef�cient system of lemmas

and propositions that can be used to deduce major congruence and similarity results. However, instead of formulating the system

from scratch, the group is currently exploring various existing axiomatic systems and de�nitions in transformation geometry (e.g.,

Douglas & Picciotto, 2017; Venema, 2006) and discussing their appropriateness and applications in the diversity of GeT courses

currently represented in the transformation group.
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Teaching GeT Working Group Update

by Nat Miller

The Teaching GeT working group continues to work on narratives to accompany the SLOs that we developed and at the same time is

incorporating some changes into the SLOs.   

The SLOs deal with 10 broad categories:

1. Proofs Derive and explain geometric arguments and proofs in written and oral form.

2. Proof Veri�cation Decide whether or not geometric arguments given by others are correct.

3. Secondary Geometry Understanding Understand the ideas underlying the typical secondary geometry curriculum well enough

to explain them to students and use them to inform teaching practice and pedagogy.

4. Axioms, Theorems, and Models Understand and explain the relationship between axioms, theorems, and geometric models in

which they hold (such as the plane, the sphere, the hyperbolic plane, etc.).

5. De�nitions Understand the role of de�nitions in mathematical discourse.

6. Technologies Effectively use technologies such as dynamic geometry software to explore geometry.

7. Euclid’s Elements Demonstrate knowledge of Euclidean Geometry, including the history and basics of Euclid’s Elements, and its

in�uence on math as a discipline.

8. Straightedge and Compass Constructions Be able to perform basic Euclidean straightedge and compass constructions and be

able to provide justi�cation for why the procedure is correct.

9. non-Euclidean Geometries Compare Euclidean geometry to other geometries such as hyperbolic or spherical geometry.

10. NCTM Standards Apply the following NCTM Geometry Standards: (a) analyze characteristics and properties of two- and three-

dimensional geometric shapes and develop mathematical arguments about geometric relationships; (b) apply transformations

and use symmetry to analyze mathematical situations; and (c) use visualization, spatial reasoning, and geometric modeling to

solve problems.

In addition to the SLOs, we included a statement that in addition to teaching these content standards, all Geometry courses for

future teachers should give students many chances to experience and develop their abilities with the mathematical process skills of

problem solving, reasoning and proof writing, oral and written communication of mathematical ideas, and productive collaboration

within groups.  They should also get a chance to engage with the progression of exploration followed by making conjectures and

trying to prove their conjectures.

So far, the working group has written narratives for SLOs 3, 4, 5, and 9.  Several of these narratives are included elsewhere in this

newsletter.  We are continuing to work on narratives for the other SLOs, with different subgroups spearheading our efforts for each

remaining SLO. We will continue to meet Thursdays at 10 AM Eastern every other week throughout the summer and would

welcome others to join us.

Suggested Citation
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Upcoming Event

GeT: A Pencil End of Academic Year Community Meeting
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